Floer Homology Language Note 8 Discreteness of Language​

 

Floer Homology Language 
     
 
Note 8 
 
Discreteness of Language
Flux Conjecture
(Lalonde-McDuff-Polterovich 1998)
Image of Flux homomorphism is discrete at H1(MR).
Lemma1
Next two are equivalent.
(i) Flux conjecture is correct.
(ii) All the complete symplectic homeomorphism is C1 topological closed at symplectic 
transformation group.
Lemma 2
Next two are equivalent.
(1) Flux conjecture is correct.
(ii) Diagonal set MM×M is stable by the next definition.
Definition
L is stable at the next condition.
(i) There exist differential 1 form u1, u2 over L that is sufficiently small.
(ii) When sup|u1|, sup|u2| is Lu1Lu2 for u1, u2 ,there existsf that satisfies u1 - u2  = df .
Explanation
0 <For conjecture and lemmas>
  is de Rham cohomology class.
Symplectic manifold     (M, w)
Group's connected component of complete homeomorphism       Ham (M, w)
Flux isomorphism     Flux: π1(Ham(M, w) )→ R
Road of Ham (M, w)     γ(t)
δγ / δt = Xu(t) that is defined bu closed differential form Utover M
Explanation
1
Symplectic manifold     M
n-dimensional submanifold      M
L that satisfies next condition is called special Lagrangian submanifold.
Ω's restriction to L is L's volume. 
2
M's special Lagrangian submanifold     L
Flat complex line bundle     L
LAGsp(M)     (L, L)
3
Complex manifold      M
M
Sheaf over M†     fp
fp (U) = C ( pU)
fp (U) = 0 ( p U)
4
Special Lagrangian fiber bundle     π : M → N
Complementary dimension 2's submanifold     S(NN
π-1 (p) = LP
Pair     (LpLp)
pN-S(N)
Lp      Complex flat line bundle
All the pair (LpLp) s is M0 .
5
(Geometric mirror symmetry conjecture Strominger-Yau-Zaslow 1996)
Mirror of M is diffeomorphic with compactification of M0 .
Pairs of Lagrangian submanifold of and flat U(1) over the submanifold     (L1, L1), (L2L2)
(L1, L1 (L2L2) means the next.
There exists complete symplectic homeomorphism that is ψ(L2 ) = L2
and
ψ*L2 is isomorphic with L1.
Impression
Discreteness of language is possible by Flux conjecture 1998.
[References]
Quantization of Language / Floer Homology Language / Note 7 / June 24, 2009
For WITTGENSTEIN Ludwig / Position of Language / Tokyo December 10, 2005
To be continued
Tokyo July 19, 2009


Read more: https://srfl-paper.webnode.com/news/floer-homology-language-note-8-discreteness-of-language/